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Generalized Noether Theorems in Canonical 
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A generalization of Noether's first theorem in phase space for an invariant system 
with a singular Lagrangian in field theories is derived and a generalization of 
Noether's second theorem in phase space for a noninvariant system in field theor- 
ies is deduced. A counterexample is given to show that Dirac's conjecture fails. 
Some preliminary applications of the generalized Noether second theorem to the 
gauge field theories are discussed. It is pointed out that for certain systems with 
a noninvariant Lagrangian in canonical variables for field theories there is also 
a Dirac constraint. Along the trajectory of motion for a gauge-invariant system 
some supplementary relations of canonical variables and Lagrange multipliers 
connected with secondary first-class constraints are obtained. 

1. INTRODUCTION 

Noether's theorems refer to the invariance of systems. The usual consid- 
erations are based on an examination of the Lagrangian in configuration 
space and the corresponding transformation expressed in terms of Lag- 
range's variables. For a system with a regular Lagrangian in classical mech- 
anics, the invariance under a finite continuous group in terms of Hamilton's 
variables was discussed by Djukic (1974). Many physically important sys- 
tems are described in terms of singular Lagrangian. A system with a singular 
Lagrangian is subject to an inherent phase space constraint (Dirac, 1964). 
A generalization of Noether's theorem in canonical variables for a system 
of finite degrees of freedom with a singular Lagrangian was given by Li and 
Li (1991) and a system with a singular higher-order Lagrangian was also 
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considered (Li, 1991). Here the symmetry properties of constrained Hamil- 
tonian systems for field theories are further investigated. Generalizations of 
Noether's first and second theorems in field theories are given, which are 
useful for analyzing Dirac's constraint. Some applications are discussed. 

The paper is organized as follows. In Section 2 the generalized Noether 
first theorem in phase space (GNFTPS) for a constrained Hamiltonian sys- 
tem is derived. In Section 3 some comments on Dirac's conjecture are given, 
and a counterexample is provided with the aid of the GNFTPS, to show 
that Dirac's conjecture is invalid. In Section 4 the generalized Noether 
second theorem and corresponding generalized Noether identities in phase 
space (GNIPS) for a noninvariant system are deduced. Preliminary applica- 
tions of the GNIPS to the Yang-Mills field theories is discussed. It is pointed 
out that for certain systems with noninvariant Lagrangians in canonical 
variables for field theories there is also a Dirac constraint. Although Dirac's 
conjecture in general is invalid, we do not know of gauge field theories to 
which Dirac's conjecture leads to the wrong results. Sections 5 and 6 apply 
the GNIPS to the Abelian and non-Abelian gauge theories, respectively; 
along the trajectory of motion for gauge-invariant systems some supplemen- 
tary relations of canonical variables and Lagrange multipliers connected with 
secondary first-class constraints are obtained. Finally, Section 7 is devoted to 
the conclusions. 

2. GENERALIZED NOETHER FIRST THEOREM IN 
PHASE SPACE 

Consider a system described by the state functions ~ ( z )  (a = 
1, 2 . . . . .  N). In classical mechanics a is the index of generalized coordinates, 
and in field theories a is the index of the component of the field variables; 
x = (t, r). The Lagrangian of the system depends on the set of state functions 
~'~(x) and their first-order derivatives: A~ ~ , % - ~ , ~  (/z= 
0, 1, 2, 3). The fiat space-time metric is 7 / ~ v = d i a g ( + - - - ) .  For many 
interesting physical systems the Lagrangian is singular, i.e., the Hessian 
matrix Ha,  is degenerate, 

\a r  o ar (1) 

The Legendre transformation introduces canonical momenta 7ra = aLa/O ~,a ; 
one can then go over from the Lagrangian description to the Hamiltonian 
description. Suppose that the rank of the Hessian matrix is N - R ;  then one 
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cannot solve for all V) ~ from the definition of  canonical momenta, because 
of  (1). This implies the existence of  constraints 

~b~ tt~) = 0 (a = 1, 2 . . . .  , R) (2) 

The equations of  motion of the constrained Hamiltonian system are given 
by 

~,~ = ~rT/~ , ro  = { v,~ HT}, ,to = - ~ / t T / ~ , ~  = {,r. ,  HT} (3) 

where - 3 ~ 0 AY Hr- Ivd~(~+X ~ba), the are Lagrange multipliers, and { . ,  } 
denotes the Poisson brackets in field theories. 

Suppose that for the system it is possible to construct a Lagrangian 5ep 
in Hamilton's form and that the corresponding action integral is given by 

i= fo ~ppd4x= f (vp"rc~- oegc) d'x (4) 

where Yt~ ~, zc~) is the canonical Hamiltonian of  the system. The summa- 
tion is taken over repeated indices. Let us consider the transformation prop- 
erties of  the system under the infinitesimal transformation of  the coordinates 
and canonical variables: 

x.  ---, x;, = x .  + e,.r""(x, ~ ,  ~r~) 

g"(x)  - ,  g~ = g"(x)  + e ~ ( x ,  ~'~ ~r~) (5) 

Jr,,(x) --, Jr" (x ' )  = ~r,,(x) + ~,,O'~(x, ~" ,  ~ro) 

generated by a finite continuous group of  transformation Gr with constant 
parameters e~ (or= 1, 2 . . . . .  r). Under this transformation suppose the 
change of  Lagrangian Lep is invariant up to a divergence term, i.e., 8Lap= 
OuA u = e~O~A~(x, g~, 7r ~) ; then one has 

6__f_/ 6 1  
0~,[(0"~r. - oet~ 8x u] + d  Or. 8 g  ~) = 0uA u (6) 8Jr. + 8q," + 

8zr. 8 g  ~ a t  

where 

- - - =  ~ - - - ,  - -  - r t ~  ( 7 )  
6zc~ ~Jr~ ~gt ~ t~Vt ~ 

and the local variations $~,~ and $~r~ can be expressed in terms of  the total 
d;~ ,~ and tSrt~, respectively: 

8 q , ~  = ~ ~, ~' - q,". 6 x "  , 8 ~r ,~ = 6 7r ,. - rc ,,.~ 6 x ~ (8) 
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Suppose that under the transformation (5) the change of the constraint 
conditions is given by 6O~ = e,~K~, hence 

0 (9 0 a 
o 

6x ~ 

-- F. = e~F~ (9) 

Introducing the Lagrange multipliers A:(x) and combining the expressions 
(6) and (9), one obtains by using the equations of motion (3) 

Ou[ ( q/=,c,~ - M'c)  6 x "  - A u ] + fftt (,c~ t~V/~) = l~Fa (10) 

Consequently, the GNFTPS for a singular Lagrangian can be formulated in 
the following way: If under the transformation (5) the Lagrangian is invari- 
ant up to a divergence term and the constraint conditions are invariant under 
the local variations of the canonical variables, then 

f vd3x  (Ra~ act -- ~ c  TOur - - A  ~ = const = 1, 2 (11 r )  ) 

This result is a generalization of a regular and singular Lagrangian system 
with finite degrees of freedom for field theories (Djukic, 1974; Li and Li, 
1991 ; Li, 1991). 

3. DIRAC'S CONJECTURE 

In the formulation of a dynamical system with a singular Lagrangian, 
Dirac (1964) conjectured that all first-class constraints (primary and second- 
ary) are generators of gauge transformations. In turn, this problem is closely 
related to the equivalence of Dirac's procedure using the extended Hamil- 
tonian He with the Lagrangian description. From time to time there have 
been objections to Dirac's conjecture (Sagano and Kamo, 1982; Castellani, 
1982; Di Stefano, 1983; Costa et al., 1985, Gr~icia and Pons, 1988). All of 
these objections are based on the observation that the equations of motion 
derived from an extended Hamiltonian are not strictly equivalent to the 
corresponding Lagrange equations. On the other hand, the Lagrange equa- 
tions of motion can be recovered from the canonical equations derived from 
a total Hamiltonian Hr. This fact has led many authors (Castellani, 1982; 
Sugano, 1982; Sugano and Kimura, 1983a-c) to reject the extended Hamil- 
tonian He as the generator of a reliable dynamical picture and to advocate 
the total Hamiltonian Hr as the correct time-development generator. Several 
examples have been given that Dirac's conjecture is not necessarily true 
(Allcock, 1975; Cawley, 1979, 1980; Frenkel, 1980). The results which were 
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given by those examples were obtained from an improper linearization of 
the functional forms of the secondary first-class constraint. If one writes the 
constraint in linearized form, then this leads to a confusion of the concepts 
of weak and strong equality (Dirac, 1964), since the constraint g ~ 0 implies 
~2-~0. Recently, it was pointed out by Qi (1990) that Dirac's conjecture 
holds in the examples given by Cawley and others. 

Here this problem will be discussed from another point of view. Based 
on the symmetry properties of the system, let us consider whether the conser- 
vation laws derived from He via the GNFTPS (11) are equivalent to the 
results arising from the Lagrangian formalism via the classical Noether 
theorem. We presented an example (Li and Li, 1991) in which we did not 
write the constraint in linearized form and Dirac's conjecture was invalid. 
The conservation law was obtained formally via Noether's theorem in that 
example. It is easy to verify that this conservation law is trivially equal to 
zero according to the equations of motion. In addition, if one writes the 
constraints in linearized form in that example, then the set of all the con- 
straints becomes second class. From the point of view of Dirac's conjecture, 
this is just as well, since neither generates a gauge transformation. While the 
linearization of the constraints was accepted by several authors, there have 
been some objections. We present another example here to avoid these ambi- 
guities. For the sake of simplicity, we consider a dynamical system with finite 
degrees of freedom. A model Lagrangian is given by 

L = ~'(s + .2 .2 .2 2 2 2 2 z2 - z3 - z4) +y(zl + z 2 -  z3 - z4) (12) 

The canonical momenta are given by 

�9 2 .2 .2 . 
p x = z l  -'FZ2--Z3--Z4, py=O, 

p~ = 2:~2, p~ = -2:~3,  

p:, = 2.~1 
(13) 

Pz4 = -2 :~;~4 

The generalized velocity s can be represented by 

_1 - -  I / 2 / _ 2  • _ 2  _ 2  
-r 2px I, Pz, TFz2--Fzs - - P 2 4 ) 1 / 2  (14) 

The canonical Hamiltonian is given by 

_ i / 2  2 2 2 2 J/2 2 2 2 2 
H c - p x  (pz! +Pz2-Pz3-JTz4) - y ( z l  +Z2-Z3-Z4)  (15) 

The primary constraint of this system is given by 

~--py~O (16) 
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where the sign ~ (weak equality) means equality on the constraint hyper- 
surface (Dirac, 1964). The total Hamiltonian is given by 

H T = H c +  ~ (17) 

where ;t is a Lagrange multiplier. The stationarity condition of the primary 
constraint yields the secondary constraint 

z ,  (18) 

Because 

{Z 1, Hr} = 1 (z~p~, + z2P~2 + z3P~3 + z4p~,) (19) 
x 

the stationarity condition of the secondary constraint Z ~ yields the secondary 
constraint 

X2 = zips, + z2P,2 + z3P,3 + Z4Pz4 "~ 0 (20) 

as long as x ~ const. Since 

{Z2, Hr} = 2YCpx (21) 

the stationarity condition of the secondary constraint Z2 yields the secondary 
constraint 

Z~ =px~0 (22) 

as long as x ~ const. The set of the constraints given by (16), (18), (20), and 
(22) is clearly first class and no more constraints are generated. The extended 
Hamiltonian is given by 

H E = H r + P l Z 1  --1- ~/2Z 2 -[- ]./3Z 3 (23) 

where Pl, P2, and P3 are Lagrange multipliers. 
The Lagrangian given by (12) is invariant under the transformation 

Z~ ~" Z 1 "Jr" Z20 , Z~ = --ZI 0 -1- Z 2 
(0 =const, 101<<1) (24) 

Z~ = Z 3 + Z40  , Zv4 = - -Z  30  "[" Z4 

From the classical Noether theorem in the Lagrangian formalism one can 
obtain the corresponding conservation law. According to the canonical 
momenta introduced in (13), let us go over from the Lagrangian description 
to the Hamiltonian description. The Lagrangian Lp in Hamilton's form is 
invariant under (24) and the corresponding transformation of canonical 
momenta (13). The primary constraint condition (16) is also invariant under 
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such a transformation. From the GNFTPS one obtains the same conserva- 
tion law as from the classical Noether theorem. But if we take into account 
the secondary first-class constraints in this problem, we cannot obtain this 
conservation law from the extended Hamiltonian He. Dirac's conjecture 
fails and there is no linearization of the constraint in this example. 

4. GENERALIZED NOETHER IDENTITIES IN PHASE SPACE 

Consider the transformation properties of a system in phase space with 
respect to an infinite continuous group which leads to the GNIPS. In quan- 
tum theory, the GNIPS identities correspond to the Ward identities. 

Let us consider an infinitesimal transformation in extended phase space 

x" '= x" + R"~e~(x) 

v~ ') = ~~ + s~e~(x) (25) 

z ' ( x ' )  = ~r~(x) + T.,~e'~(x) 

generated by an infinite continuous group of transformations Good, with 
arbitrary functions e~(x) (o-= 1, 2 . . . . .  r) and their derivatives up to some 
fixed order, where RU~, S~, and T ~  are linear differential operators, 

S~ = b~(k)~v(k) (26) 

T~ _ ..(t)z a - -  t ' a a  U v ( l )  

with 

n n 

A~ ~") = Aw . . . .  ~P, Ou(,) =rOuOv . . . O~Op (27) 

a, b, and c are functions of x, ~ ,  and z . .  Under the transformation 
(25) suppose that the change of the Lagrangian s is given by 

6 ~  = OuA u + W (28) 

with A" = Aw and W= U~e~(x),  where U~ and AU~ are linear differential 
operators, 

(29) 
Au~ = v" v(')Ov(.) 
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where u and v are functions of x, g*, and zG. From (4) and (25), one has 

;td 4x I 61 ~,o 6I ~ , , ,  U~,e~, ] L.8~r---~ (T~-  ~ra,uR,~)e +~-~-dga (S~- ~.uR,,)e - 

_ d  : ] }  
(30) 

Since the e'~(x) are arbitrary functions, one can choose e'~(x) and their 
derivatives up to the required order to vanish on the boundary of the 
domain; then we can make the terms of the right-hand side of the identity 
(30) vanish. We then repeat the integration by parts of the remaining terms 
of this identity, after which we apply the fundamental lemma of the calculus 
of variation to conclude that the generalized Noether second theorem in 
phase space can be formulated as: If the change of the Lagrangian Lap is 
given by (28) under an infinite continuous group G~or involving derivatives 
up to some given order inclusive, then there exist r identity relations between 
the functional derivatives ~ / / 8~  ~ and ~//~tr~ and their derivatives up to 
some order, 

(or = 1, 2 , . . . ,  r) (31) 

where K~, ~g, i~'~,,, and 0o are the operators adjoint to RUo, 4 ,  Ta~ and 
U,,, respectively, defined by 

f fR~gd4x=f g~fd4x+[.]~ (32) 
~'t'Z 

where f, g are functions defined on the domain fl and [. ]s is a boundary 
term, and similar expressions hold for ~,~o, ~ ;  T~,, iF~o, and U ~, 0 ~ in 
(31). 0~(1) indicates the operators adjoint to unity. These identities are 
generalizations of our previous work for field theories in the case where the 
Lagrangian Lap is variant under the infinite continuous group Goor (Li and 
Li, 1991; Li, 1991). These identities (31) are called the GNIPS. 
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We apply the GNIPS to the Yang-Mills theories; since the gauge trans- 
formation in general can be expressed as 

5x ~ = 0 

5 ~ ( x )  = b~.s"(x) + b~."O, g'(x) (33) 

57r,~(x) = c o ~ ( x )  

then, in the case of G~r invariance, the GNIPS becomes 

c ,~-~  +b~, 8I _O,(bg~ f~_I_~t (34) 
~~- 5v, I 

Thus, we have the identity relations between the functional derivatives 51/ 
5~", 51/57r,, and their derivatives, and this leads to a relation in the 
number of linearly independent functional derivatives 8 / / 6 ~  ~ and 5//5Jr~. 

In the case of Go~r invariance under the transformation (33), one has 
the basic identity 

51 ,~ 51 ~ ,~ ,, ~ + d  
c~..e +~,t~(b~s +b~'Oue ) [rc~(b~e~+bg'O,s~)]=O (35) 

5~r~ ~... dt 

Multiplying (34) by s ~ and substructing the result from (35), one obtains 

Ou(bg" 81 e~)+d [Tr~(bge~ +bg, Ous~) l=O (36) 
] dt 

The GNIPS (34) and the identity (36) are independent of whether the 
Vt ~ are a solution of the canonical equations of the constrained Hamiltonian 
system. Consider a constrained Hamiltonian system whose equations of 
motion are derived from the Hamiltonian H= Hc + H' = Hc + S d3x "~~162 
where Cb are first-class constraints; then, along the trajectory of motion, the 
GNIPS (34) becomes supplementary conditions of the form 

5H' 5/-J'_ [ ~. 5// ' /  (37) 
k 

These conditions may have nontrivial meaning. They constitute the supple- 
mentary conditions on canonical variables of fields a n d  the Lagrange 
multipliers. 

As is well known, a gauge-invariant system in the Lagrangian formalism 
has a Dirac constraint. Using the GNIPS (31), we can further show that for 
certain noninvariant systems there is also a Dirac constraint. Suppose that 
under the transformation (33), the change of the Lagrangian L, ep is given by 
5s U..s". where U~=u..+uUO, u~ + u.. O,0~. with the u~ and ug as 
functions of x. of .  and ~r~ and the u"~ ~ are functions of x and gt ~. For 
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example, some massive Yang-Mills field theories belong to this category 
(Zhao and Yan, 1978; Li, 1982). In these circumstances, the GNIPS (31) 
becomes 

c~,~ - -  + b,~ - -  + Oulb,~ lzG + - - / / =  u , ~ -  Gu,~ + GOvuU~ v (38) 

Since 

02~ 02s 
~t~ - ~a 4 - -  ~a (39) 

substituting the expressions (39) into the identities (38) leads to terms con- 
taining third time derivatives of qt ~ which must cancel each other irrespective 
of other terms, 

b~U O2"LP 
O ~ ~ 0~ ~o = 0 (40) 

These conditions are fulfilled for any third-order time derivative of ~t~; 
therefore one obtains 

a p  m b,~ H a a - O  (41) 

Since b~ u are not all identically zero (for example, the gauge transformation), 
this implies det(H~a)= 0; then the Hessian matrix is degenerate, and the 
system has a Dirac constraint. 

In the following we give some applications of the GNIPS to gauge field 
theories. 

5. ABELIAN CASE 

First, let us consider the electromagnetic field coupled to a charged 
boson field whose Lagrangian is given by 

i 0 = - �88 vF  ~ v -  ~[( , + ieAu)q~]*[(O u + ieA~,)q~] - V(~p~o*) (42) 

V(tptp*) = p ~o~p* + �89 (r (43) 

For p > 0 and A, # 0, the bosons are massive and self-interacting; for p < 0 
and ~ > 0, V(q~40*) is called a Higgs potential. This Lagrangian (42) is invari- 
ant under the local U(1) gauge transformation. If one writes q~= r/e ;~ and 
use the modulus 1/and phase 0 as new fields instead of the fields q~ and ~0", 
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the Lagrangian expressed in terms of these new fields then becomes 

- V(rl) + A u j  u + �89 u (44) 

with 

j~' = -er/2(0u 0 + eA u) 

The Lagrangian (44) is invariant under the local transformation 

A (x) --, A (x) = A.(x)  + a.  

r/(x) ~ r/'(x) = . (x )  (45) 

O(x) ~ O'(x) = O(x) + ee(x)  

The canonical momenta are given by 

zc ~ = 0~~ = - F  ~ (46a) 

zr, = O~/Or) = 00r/ " (46b) 

~ro = as = rl2(c3oO + eAo) (46c) 

exhibiting the primary constraint 

�9 = ~r ~ ~ 0 (47) 

The canonical Hamiltonian density is given by 

~ =  ~zc,Jri-AoO,rc,+ IF, kF, k+ �89 + 7r2o-eAorco 

+ �89 l + ~(Okrl)(Okrl) + V(q)  +erl2Ak(OkO + ~.eAk) (48) 

The requirement that { ~r ~ Hr} vanishes at least weakly leads to the second- 
ary constraint 

Z = c317ri + eno ~ 0 (49) 

where H r  = S d3x ( ~  + Ax~ , with a multiplier function ;t (x). There are no 
further constraints. The set of constraints ( ~ 0  and Z ~0)  is clearly first 
class. The Lagrangian ~ e  in canonical form is invariant under the local 
transformation 

~ A u = S ~ e ( x ) = O u e ( x ) ,  8r/=0,  8 0 = S O ( x ) = e e ( x )  
(50) 

~zr ~ = O, 81r0 = O, firco = Te(x)  = 2erl2aoe(X) 
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The GNIPS (31) becomes 

\ ~Tro/ \ SAu /  \ 

For a gauge-invariant system Dirac's conjecture is valid (Costa et al., 1985). 
The dynamics of a system possessing constraints (47) and (49) should be 
described by the equations of motion arising from the extended Hamiltonian 

He  = H +  H' = f d3x [M' + ZJr ~ +/1 (tg:ri + e~ro)] (52) 

where A,(x) and g(x) are multiplier functions. Along the trajectory of 
motion, the GNIPS (51) becomes 

' ~H' 6 H  ~ 

From the expressions (50), (52), and (53), one obtains 

do[, (x) r/2(x)] = 0 (54) 

which implies that the multiplier/,t (x) connected to the secondary first-class 
constraint must make the quantity/~ (x)r/2(x) independent of time explicitly. 

For the free electromagnetic field, Dirac's conjecture also holds; along 
the trajectory of the motion, the GNIPS becomes a trivial equality. 

For the Proca field A, coupling with an external source f ,  the Lagrang- 
ian is given by 

= - ~F/,vF "v + �89 u (55) 

One can proceed in the same way, under the transformation 

~A" = 0" e(x), ~zr u = 0 (56) 

where the 7r, are canonical momenta conjugate to A ' ;  the GNIPS (31) 
implies the supplementary condition mZO, A u + O,j u= 0 along the trajectory 
of the motion. Then, the conservation of current j "  is equivalent to the 
Lorentz condition. For an electromagnetic field coupling with an external 
source this implies that the electric charge density and the current density 
satisfy the equation of continuity. 
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6. NON-ABELIAN CASE 

The Lagrangian of the Yang-Mills field coupled to a scalar field is 
given by 

l r t T a  12 I D a 2 .~=-,t,~,~j - ~[( ,~)  ] - v(~0) (57)  

where 

a _ a a a f l  r Fuv-OuAv OvAu+gc/jrAuAv (58) 

and A~ is a Yang-Mills field with non-Abelian group index a belonging to 
the adjoint representation of the non-Abelian gauge group G and c~r is the 
antisymmetric structure constant of the group. The scalar (Higgs) field q~ 
belongs to an orthogonal representation of the group with 

( Duq)) ~ = Ouep ~ + gA~Ir~Mp ~ (59) 

where the antisymmetric matrices I r represent the generator of the represen- 
tation. The potential V(~0) is a fourth-order polynomial in components q~, 
invariant under the action of G. 

The canonical momenta are given by 

zu = &o.q'/Oft~, = _rOt ̀  

z~ = OLP / O(o" = ( D~ ep)~ 

(60a) 

(60b) 

respectively. The Yang-Mills Lagrangian is also singular, and the primary 
constraints are 

r 1 7 6  (61) 

The canonical Hamiltonian density is given by 
1 a a - - t  a t t - - 1  a 2 '1 a 2  ~ =  ~ r i  ~ r i .  ~ 7r . z (Flj )  + ~ [ (Di~)  ] + Z(~ )  

a 7 ~ t - Ao(O~z~ +gc,  aAt z r-gq~aI~rzr) (62) 

The consistency conditions {z ~ , HT} ~ 0  lead to the secondary constraints 

Z" = O~ff ~ + gc~ aA~ zr~ - g (o/J l~rz  r ~ 0 (63) 

where Hr=S d3x (o~ + ~/'z ~ with the multiplier functions A2(x). There is 
no further constraint. The set of constraints (61) and (63) is first class. The 
Lagrangian Lzp is invariant under the transformation 

3~oa = S~et~(x) = -ig~rqr 

S z  '~ = T~ Ea(x) = ( OoS~ + gA~I~oS~Oo) e~(x) 
(64) 

- ~ O  u +gc~rAu) 

5zU= TU~eO(x) (T~ O--gcarz . ) "  . 
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For a gauge-invariant system, the dynamics of the system can be described 
by the equations of motion arising from the extended Hamiltonian; along 
the trajectory of motion the GNIPS (31) becomes 

~ ,,f a H"~ ~ u [ S H"~ ~<, [ 6 H"~ 
Tt~t~--~) + ~ ( ~ )  + (65) 

where 
/- 

/ =Jd3x[X= o = , +Iz,,(Oilri +gc~aAi 7Cr-gqgaI~r~r r] (66) 

with the Lagrangian multiplier functions ,~"(x) and/l~(x). Substituting the 
expressions (64) and (66) into the expressions (65), one obtains 

@I~IOa,~IP ltpAr~oa qgx- igI~al~aq~aOo(lapq9 ~) 
p p 8 r + igI,~,~I,,rl.tp~o Ir 

_1_ a ~, p a y_ y a _ Ca~,[~aOi~ i +gc~pp(Jrl Ai •iAi )] - 0  (67) 

Thus, if Dirac's conjecture is accepted, then some supplementary relations of 
the canonical variables and Lagrangian multipliers connected with secondary 
first-class constraints are obtained for the model (57). 

For the pure Yang-MiUs field, Dirac's conjecture holds (Castellani, 
1982); along the trajectory of the motion the GNIPS is 

a ~ p o" y_ y ~ _ c,y[~Oix~ +gc~#p(~i A~ ~.Ai)]-O 

These supplementary conditions do not involve the derivative of the Lag- 
rangian multipliers p~(x) connected with secondary first-class constraints. 

7. CONCLUSIONS 

Based on the canonical formalism, the GNFTPS for an invariant system 
with a singular Lagrangian and the GNIPS for a noninvariant system in 
field theories were derived. Considering the symmetry properties of a system, 
a counterexample was shown on the invalidity of Dirac's conjecture for a 
constrained Hamiltonian system from the viewpoint of the generalized 
Noether theorem in the context of phase space. A preliminary application 
of the GNIPS to field theories was discussed. The GNIPS gives us some 
identity relations between the functional derivatives (with respect to canon- 
ical variables) and their derivatives. By combining the GNIPS and the con- 
straint conditions, one can find more relationships among some of the 
variables. Using the GNIPS, it has been shown that for certain noninvariant 
systems in the canonical formalism there is also a Dirac constraint. Along 
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the trajectory of the motion the GNIPS becomes the supplementary condi- 
tions on canonical variables and the Lagrange multipliers. The application 
of the GNIPS to models in Abelian and non-Abelian gauge field theories 
was discussed in detail. The application of the GNFTPS and the GNIPS to 
field theories enables us to obtain additional information about the Dirac 
constraint and the Lagrange multipliers. 

The extension of the theory to field theories with singular higher-order 
Lagrangians is formally straightforward, but the extension of  the theory to 
supersymmetry needs further consideration. 
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